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PREFACE

This study was conducted and this report was prepared by Gunars Abele,
Research Civil Engineer, Applied'Research Branch, Experimental Engineering
Division; Dr. Jerry Brown, Soill Scientist, Earth Sciences Branch, Research
Division; David M. Atwood, Photographer, Engineering Services Branch, Tech-
nical Services Division - U.S. Army Cold Regions Research and Engineering
Laboratory; and Dr. Max C. Brewer, Environmentalist, Naval Petroleum Reserve
No. 4. Phil Jeans, Camp Manager; Husky 0il, assisted in the field work.

This work was performed under DA Project 4A161102AT24, Research in Snow,

Ice, and Frozen Ground; Task A2, Cold Regions Envirommental Interactions;

Work Unit 002, Cold Regions Environmental Factors.

The Naval Arctic Research Laboratory, Barrow, and the NPR-4 Base Camp
at Lonely, operated by Husky 0il, provided logistics support, including
facilities, equipment and aircraft. The assistance and approval of Lieutenant
Commander A.E. Corcoran, Officer in Charge, NPR-4, are greatly appreciated.
The contents of this report are not to be used for advertising or pro-
motional purposes. Citation of brand names does not constitute an official

endorsement or approval of the use of such commercial products.
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NOMENCLATURE

CATCO (8-wheel vehicle)

Houston (6~wheel vehicle)

Nodwell (tracked vehicle)

Number of vehicle traffic passes

Depression of terrain surface under the center of tire (cm)
Depression of terrain surface under the edge of tire (cm)
Thaw depth, control area (cm)

Thaw depth, below track (cm)

Moisture content of peat, control area (%)

Moisture content of peat, below track (%)

Moisture content of mineral soil, control area (%)
Moisture content of mineral soil, below track (%)

Dry density of peat, control area (g/cm3)

Dry density of peat, below track (g/cm3)
Dry density of mineral soil, control area (g/cma)

Dry density of mineral soil, below track (g/cm3)
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INTRODUCTION

The recent increase in the oil exploration activities on the Arctic
Coastal Plain of Alaska has resulted in a corresponding increase in
surface transportation requirements. Not all traffic can be confined to
the winter months when the ecological impact of vehicle operations is
less severe. Traffic across tundra during summer can result in effects
that vary significantly in the degree of severity depending on the
vehicle, traffic and terrain characteristics.

A number of studies have been conducted on the effects of off-road
vehicular traffic on tundra, including wheeled, tracked, and air cushion
vehicles (Abele, 1976; Abele and Brown, 1977; Burt, 1970a, 1970b; Kevan,
1971; Miller, et. al., 1977; Radforth, 1970, 1972, 1973a, 1973b; Rickard
and Brown, 19T4; Sterrett, 1976; Walker, et al. in press). As a follow-
up to these studies, a series of traffic tests with three different
vehicles was performed on tundra near Lonely, Alaska, on 3 August 1976
to obtain additional envirommental information which will provide added

insight for decisions on operations of Naval Petroleum Reserve No. L.*

* Recently renamed "National Petroleum Reserve = Alaska."




DESCRIPTION OF STUDY

Test Site

Location of the test area, approximately 2 miles south of Lonely,
is identified in Figure 1. The immediate test site can be characterized
as poorly drained with very weakly developed polygonal ground patterns,
virtually no surface relief, and having a relatively uniform vegetation
distribution (predominantly Dupontia, Carex, Eriophorum), the organic layer
approximately 12 cm thick with a mean water content of approximately 400%,

and thaw depth generally in the 20 to 30 cm range.

Test Vehicles

Three vehicles were used for tae traffic tests:

1. CATCO Rolligon (11,700 kg or 26,000 1b, empty), an 8-wheel,
low pressuge, smooth, wide tire vehicle, inflation pressure
0.35 kg/em” (5 psi), minimal load (Fig. 2)

2. Houston Rolligon (6,800 kg or 15,000 1b, empty), a 6-wheel,
low pressure, rihbed, wide tire vehicle, inflation pressure
0.2 to 0.3 kg/em“ (3 to 4 psi), no load (Fig. 3)

3. Nodwell, FN-10 (2,253 kg or 5000 1b empty), low

pressure (0.1 kg/cm® or 1.4 psi), tracked vehicle, no
load (Fig. 4)

Traffic Test Layout

Aerial views of the traffic test area are shown in Figures 5 and 6.
The test lane layout is shown in Figure T.

The test area consists of three traffic loops, one for each of the
three traffic conditions: 1, 5, and 10 passes. Each loop consists of
6 parallel lanes, 2 for each test vehicle, for a total of 18 parallel
tests lanes, each approximately 100 meters long. The direction of

traffic on each lane is indicated in Figure T.
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The vehicle speed during the tests was approximately 5 mph
(8 kxm/hr). The traffic tests were completed within a period of a

few hours.

Data. Obtained

Immediately after the traffic tests, color photographs were taken
from the south end of each lane, looking toward north, to document the
visual appearance of the traffic signatures. A few aerial photographs
of the area were also taken after takeoff from Lonely enroute back to
Barrow.

Surface depression and thaw depth measurements were obtained across
both ends of each test lane, marked with wooden stakes.

Moisture content, dry density, peat and thaw depth measurements
were obtained across the midpoint of some of the test lanes (refer to
Fig. 7) and from the control areas between lanes. The dry density
values were computed from the oven-dried (at 110°C) moisture samples,
obtained in open-end cans and returned to the soils lab in Hanover,
N.H. in sealed plastic bags.

All field data and samples were obtained within two houres after

the traffic tests.




DISCUSSION OF RESULTS

Fhotographic Record

Figures 8 through 25 are color photographs of the 18 test lanes,
viewed toward north. (The arrow in the caption denotes direction of
traffic.)

The traffic signatures, when viewed against the direction of travel,
appear darker than the surrounding terrain (Figures 11-13, 17-19, 23-25)
end are more visible than when the traffic signatures are viewed in the
direction of travel, in which case they appear slightly lighter than the
adjacent terrain surface (Figures 8-10, 14-16, 20-22). It is, therefore,
usually quite easy to determine the direction in which a vehicle has
traveled by merely a quick glance, without close inspection of the
vegetation (direction of bending).

The direction of travel of a vehicle is usually even more evident
from the air; however, the relative visibility of a traffic signature is
influenced by the direction and angle of sunlight relative to the position
of the viewer. In this case (Figures L4 and 5), *%e traffic signatures
which were more prominent when viewed from the ground (traffic direction
towards the vigwer) are barely perceptible when viewed in the same direction
from the air a couple of hours later in comparable overcast conditions.
Yet the lighter color signatures (traffic direction away from the viewer),
which were less obvious from the ground, are quite prominent from the air.

It is, therefore, important to recognize that visual appearance alone
of a traffic signature is not necessarily a reliable indicator of the effects
of traffic on organic terrains. A cursory visual inspection or photographs,
especially aerial, from one particular position are not dependable means

for estimating the relative ecological impact of vehicular traffic on tundra.
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Terrain Surface Depression

The locations of the surface depression and thaw depth measurements
across each lane are illustrated in Figure 26.

The depression left by a soft, wide rubber tire in a soft =errain
is not uniform in cross-section; penetration below the center of tire
can be considerably less than that below the edges, as shown in Figure 26.
The surface depression measurements were, therefore, taken in the center
as well as in both edges of the tire track. The center and edge depression
data were treated separately (Tables 1 and 2), since the average would not
be a very meaningful value. :

In the wheeled vehicle (CATCO and Houston) test lanes, surface depression
measurements were taken as follows: One measurement at each edge of each
wheel track and one measurement in the center of each wheel track at both
ends of the lane, a total of 8 measurements at the edge (ye) and k4
measurements at the center (yc) for each tesf lane.

In the tracked vehicle (Nodwell) test lanes, two surface depression
measurements (yc = ye) were taken in each track at both ends of the lane,
for a total of 8 measurements for each test lane (refer to Fig. 26).

Figure 27 shows in a cross-sectional format all the data obtained in
this test area. The surface depression data, center and edge for both
tracks of each lane, are shown graphically at an exaggerated vertical scale,
with the corresponding thaw depth profiles plotted below.

Table 1 contains the surface depression and thaw depth data for both ends
of the test lanes separately. (Note that the "thaw depth in track," hT'
measurements were obtained after the traffic tests, as shown in Fig. 26;
therefore, the Yo value has to be added to the hT to obtain the original thaw

depth at that location.)

11
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TABLE 1. Thaw depth and surface depression data
em—— 1
Track South End of Lane North End of Lane
No. of (Left or Thaw Depth Surface Depression Thaw Depth Surface Depression |
Lane No. Vehicle Passes Right) | (Control) (1rack) (Center) (Edge) (Control) (Track) (Center) (Edge)
L h hy Ye Ye he hy ye Ye
() (cm) (en) _ (cm) () _(cm) (cm) __(cm)
L 2 0 0.5 22 0 0
! ¢ 1 25 21
R 2 0 0 18 0 2
23 22
L k| 0 0 22 0 0
H H 1 22 24
R 22 0 0 24 0 0
28 24
L 20 0 24 [}
3 N 1 20 22
R 22 0 24 0
23 19
R 21 16 0
4 N 1 17 1%
L 8 0 18 0
23 23
R 22 0 0 17 0 0
5 H 1 24 17
L 14 0 0 16 0 0
26 19
R 22 1 0.5 25 0 1.5
6 4 1 30 29
L 29 0 0.5 24 0 0.5
L 27 0 3.5 27 1 1.5
7 C 5 28 25
R 24 2 2.5 17 0 2
28 . 20
L 23 1 1.5 18 0 1
8 1l 1 23 24
R 19 0 1 23 0 1
21 24
L 22 1.5 21 1
) N 5 25 21
R 19 0.5 21 2
22 26
R 24 2 22 1
10 N 5 28 26
L 24 1 28 2
24 22
R 23 1 1.5 22 1 2
n 1 [ 25
L 36 0 1.8 17 1 1.§
27 22
R 27 s 1.5 19 0 2
12 C 5 23 22
L 23 1 2.5 24 2 4
S— a SSU S— - e oo -~ SEELGEEN B S—.
L 7 1 2.5 22 2 6
13 4 10 24 25
R 20 0 2.5 3 4 6.5
26 32
L 27 2 3 27 1 1.8
4 H 10 27 25
R 26 3 3.5 21 2 2.5
3 24
L 25 2.5 25 ?
15 N 10 27 31
L} 26 1.5 28 2.8
25 31
R 27 2.5 22 2.8
16 N 10 23 22
L 25 1.8 20 2
22 23
R 15 1 2.5 20 3 4
7 L] 10 25 23
L 21 2 2.5 23 4 ]
36 21
R 3% 2 L} 21 3 4.5
18 c 10 » 19
L 28 2 q 2] 0 4“5
RS- — e e e e —— -
\3
B i it . -

KT ey, S
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To determine whether or rot there is any significant difference
in the thaw depth between the north and the south ends of the lanes, mean
values were calculated for each end of the three (1, 5, and 10-pass) traffic

test areas:

Mean Thaw Depth (cm)

Lane No. South End North End
l1-~6 22.9 bl
T ~12 2550 | 22.9
13 -18 26.6 25.5
Overall mean: 24.8 23.2

Each value above represents a mean of 23 measurements (control plus
track data from Table 1); each overall mean value represents 69 measurements.

The mean thaw depth of the north end of the test area is 1 to 2 cm
less than that at the south end. This difference can be considered insignificant
when compared with local variations in thaw depth (refer to Figure 27).

More noticeable is the trend of increasing thaw depth towards east,
but that difference (a few cm in the mean values) is also small in relation
to local variations (Fig. 27).

There is no significant systematic change in the terrain characteristics
(vegetation, relief or thaw depth) in either the North-South or East-West
direction across the test area which would cause a systematic effect on the
traffic test results. Variations in the results, such as the surface
depression, are caused by the more prominent local variations in water content,

density, relief, etc.




Table 2 summarizes the surface depression data for each test lane. The
mean depression values for each test condition are plotted as cross-
sections in Figure 28 (vertical scale exaggerated approximately 10 times
that of horizontal). The immediate impression is that the smooth-tire CATCO
caused the most sinkage and the tracked Nodwell the least. This is also
evident from Figure 29, where the surface depression (at edge of track)
is plotted vs the number of traffic passes. It should be noted that the
CATCO had the highest ground pressure, the Nodwell had the lowest, and'one
vehicle pass with the CATCO represents 4 wheel passes, compared with only
3 for the Houston.

If the surface depression is plotted vs the number of wheel (instead
of vehicle) passes, the difference between the CATCO and the Houston is no
longer significant (Figure 31). There is, of course, no practical way to
present the Nodwell traffic in terms of equivalent wheel passes.

The surface depression at the center of the track vs the number of
vehicle and wheel passes is shown in Figures 30 and 32, respectively.

The terrain surface depression appears to increase proportionally
with increasing traffic, at least up to 10 vehicle (30 to 40 wheel) passes.
Thereafter, the sinkage-traffic curve may start to ievel off slightly if
no shearing or disaggregation of the organic mat occurs, or it may begin to
curve upward rapidly, if the durability of the organic mat is exceeded,
resulting in complete mat failure and sinkage down to the frost line (refer
to the previous Barrow tests in the Appendix).

Noticeably more damage to the terrain surface occurs when a vehicle is
turning, because of the lateral shear forces caused by a tire and
particularly by the hard edge of a track. The degree of damage increases
with the vehicle's speed, with the amount of sinkage, and with a decrease

in the turning radius.
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TABLE 2. Surface depression, mean values

Mean Surface

: No. of Depression
Lane No. Vehicle Passes (Center) (Edge)
n i Ye
(cm) (cm)
1 0 0.6
CATCO 1
6 )52 0.8
2 0 0
Houston 1
5 0 0
3 0
Nodwell 1
4 0
7 0.8 234
CATCO 5
12 0.8 2.5
8 058 1.1
Houston 5
11 0.7 1.6
9 158
Nodwel1 5
10 1.5
13 1.8 4.4
CATCO 10
18 1.8 4.2
14 2.0 2.5
Hous ton
17 2.9 3.5
15 2l
Nodwe11 10
16 2.1
\1
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Vegetation and Soil Properties

The moisture content and dry density data are listed in Table 3
(refer to Fig. 7 for the locations of these measurements; the data are
also plotted in Fig. 27). The peat thickness and thaw depth data at
these measurement sites are also shown.

Since only a limited amount of data were obtained, it is not really
possible to determine the impact of traffic on the moisture content and
density conclusively. However, to investigate whether there was any
apparent effect from the traffic, the data from below the vehicle tracks
were plotted vs the closest adjacent control data (refer to Table 3 and Fig.
27). No data were obtained in the l-pass tracks.l

Figure 33 shows the moisture content of peat below the track, w (

p(T)*

vs the adjacent control area, wp(C)'

represented by the straight line. No conclusions can be drawn from this

The wp(T) =va(c) condition is

graph. However, the effect on the moisture content in the mineral soil
is more evident (Fig. 34). There appears to be some décrease in the
moisture content of the mineral soil below the trafficked area. This
observation, combined with the evidence that there may have been some
increase in the dry density of the mineral soil (Fig. 36), implies that
the mineral soil has been subjected to some degree of compaction due to
traffic. Any comparable influence on the dry density of peat is not

conclusive from the available data (Fig. 35).
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SUMMARY AND CONCLUSIONS

Traffic tests on tundra with two, low pressure tire Rolligon-type
vehicles and a small, tracked Nodwell with minimal or no load for a total
of 10 vehicle passes (30 to LO wheel passes) resulted in a terrain surface
depression of approximately 4 cm (maximum). The traffic impact was
limited to compression of the vegetation and the organic mat (and to
some degree the thawed mineral soil below), with no obvious evidence of
shearing or disaggregation of the mat.

It is expected that all of the traffic lanes will recover, the
surface depression and the disturbance of the active layer being a short
term impact (a few years), the wvisibility of the vehicle tracks ("green
belt" effect) lasting somewhat longer. It has been observed (Abele,
1976) that a depressed, but unsheared, orgenic mat displays considerable
ability to rebound during a period of a few summers.

It is planned to make annual visits to the test area to monitor
the test lane conditions with photographs and measurements (surface
depression, thaw depth, water content, density). Vegetation and soil
of the test site will be characterized during the summer of 1977 and
the impact evaluated by the rating scheme described by Walker et'ail.

(in press).
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APPENDIX: ROLLIGON TESTS, BARROW, 19Th

On T August 1974, three test lanes, 1, 5 and 15 traffic passes, were
made with a 4-wheel Rolligon Vehicle (Fig. A-1) at a site approx. b
miles southeast of Barrow, near the Ikpik Slough, where Air Cushion
Vehicle (ACV or SEV) and Weasel traffic tests had been conducted during
the summer of 1971. The test area is on a level, drained lake bottom,
with a relatively uniform and homogeneous saturated active layer and
vegetation, the organic mat héving a moisture content of approx. 1000%
and thaw depth in the 20 to 30 cm range.

The Rolligon tests were not planned; they were done onvthe spur-
of-the-moment during inspection of the 3-year old ACV and Weasel test
lanes. During subsequent monitoring of the ACV and Weasel lanes in 1975,
1976, and 1977, photographs of the Rolligon lanes were also taken.

The test vehicle had ribbed (cleated) tires with an inflation pressure
between 0.2 and 0.3 kg/cm2 (approx. 3 to 4 psi) and carried no load.

In one section of the 15-pass lane, initially intended for 25 passes,
the Rolligon tires had penetrated through the active layer almost

down to the permafrost after 10 passes; traffic was therefore, stopped
after 15 passes.

Figure A-2 shows the cross-sections of the Rolligon test lanes.

For the 15-pass lane, two cross-sections are shown, one for the area

where complete failure of the thawed layer occurred (south end of lane)

and the other where the terraia was slightly elevated, drier and had a higher
frost line (north end of lane) and thus only partial failure had occurred.

During traffic on the 15-pass lane, a visual observation was




made on the apparent failure mechanism of the organic mat, i.e.,
how the mat is gradually weakened to the point of failure with repeated
traffic. This is shown and explained in Figure A-3.

Figures A-4 through A-15 show the Rolligon test lanes immediately

after traffic, and after 1, 2 and 3 years.

FIGURE A-1. Rolligon vehicle used for traffic tests.
Ribbed (cleated) rubber tires; tire inflation
pressure (and approximatezground contact pressure)
between 0.2 and 0.3 kg/cm“ (3 to 4 psi); no load,
except for 2 men and fuel.
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FIGURE A-4. After test FIGURE A-5. After 1 year

FIGURE A-6. After 2 years FIGURE A-7. After 3 years

Rolligon - 1 traffic pass
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FIGURE A-8. After test FIGURE A-9. After 1 year

FIGURE A-10. After 2 years FIGURE A-11. After 3 years

Roiligon - 5 traffic passes
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FIGURE A-12. After test FIGURE A-13. After 1 year

FIGURE A-14. After 2 years FIGURE A-15.

Rolligon - 15 traffic passes
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